{ "id": "math/0703497", "version": "v1", "published": "2007-03-16T19:00:21.000Z", "updated": "2007-03-16T19:00:21.000Z", "title": "On some nonlinear partial differential equations involving the 1-Laplacian", "authors": [ "Mouna Kraiem" ], "comment": "16pages", "categories": [ "math.AP" ], "abstract": "In this paper we present an approximation result concerning the first eigenvalue of the 1-Laplacian operator. More precisely, for $\\Omega$ a bounded regular open domain, we consider a minimisation of the functional ${\\ds \\int_\\Omega}|\\nabla u|+n({\\ds \\int_\\Omega} |u|-1)^2 $ over the space $W_0^{1,1}(\\Omega)$. For $n$ large enough, the infimum is achieved in some sense on $BV(\\Omega)$, and letting $n$ go to infinity this provides an approximation of the first eigenfunction for the first eigenvalue, since the term $n({\\ds \\int_\\Omega} |u|^2-1)^2$ \"tends\" to the constraint $\\|u\\|_1=1$.", "revisions": [ { "version": "v1", "updated": "2007-03-16T19:00:21.000Z" } ], "analyses": { "subjects": [ "35J70", "35J60" ], "keywords": [ "nonlinear partial differential equations", "first eigenvalue", "bounded regular open domain", "first eigenfunction", "approximation result" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3497K" } } }