{ "id": "math/0703486", "version": "v1", "published": "2007-03-16T13:11:32.000Z", "updated": "2007-03-16T13:11:32.000Z", "title": "Kähler-Ricci flow on a toric manifold with positive first Chern class", "authors": [ "Xiaohua Zhu" ], "categories": [ "math.DG", "math.AP" ], "abstract": "In this note, we prove that on an $n$-dimensional compact toric manifold with positive first Chern class, the K\\\"ahler-Ricci flow with any initial $(S^1)^n$-invariant K\\\"ahler metric converges to a K\\\"ahler-Ricci soliton. In particular, we give another proof for the existence of K\\\"ahler-Ricci solitons on a compact toric manifold with positive first Chern class by using the K\\\"ahler-Ricci flow.", "revisions": [ { "version": "v1", "updated": "2007-03-16T13:11:32.000Z" } ], "analyses": { "keywords": [ "positive first chern class", "kähler-ricci flow", "dimensional compact toric manifold", "metric converges" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3486Z" } } }