{ "id": "math/0703403", "version": "v1", "published": "2007-03-14T03:19:22.000Z", "updated": "2007-03-14T03:19:22.000Z", "title": "Decomposition of weighted Triebel-Lizorkin and Besov spaces on the ball", "authors": [ "G. Kyriazis", "P. Petrushev", "Yuan Xu" ], "comment": "30 pages", "categories": [ "math.CA" ], "abstract": "Weighted Triebel-Lizorkin and Besov spaces on the unit ball $B^d$ in $\\Rd$ with weights $\\W(x)= (1-|x|^2)^{\\mu-1/2}$, $\\mu \\ge 0$, are introduced and explored. A decomposition scheme is developed in terms of almost exponentially localized polynomial elements (needlets) $\\{\\phi_\\xi\\}$, $\\{\\psi_\\xi\\}$ and it is shown that the membership of a distribution to the weighted Triebel-Lizorkin or Besov spaces can be determined by the size of the needlet coefficients $\\{\\ip{f,\\phi_\\xi}\\}$ in appropriate sequence spaces.", "revisions": [ { "version": "v1", "updated": "2007-03-14T03:19:22.000Z" } ], "analyses": { "subjects": [ "41A25", "42B35", "42C15" ], "keywords": [ "besov spaces", "weighted triebel-lizorkin", "appropriate sequence spaces", "unit ball", "decomposition scheme" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3403K" } } }