{ "id": "math/0703379", "version": "v1", "published": "2007-03-13T15:14:07.000Z", "updated": "2007-03-13T15:14:07.000Z", "title": "Gabor frames without inequalities", "authors": [ "Karlheinz Gröchenig" ], "comment": "16 pages", "journal": "International Mathematics Research Notices 2007 (2007), rnm111-21", "categories": [ "math.FA", "math.OA" ], "abstract": "We prove fourteen equivalent conditions for a set of timefrequency shifts on a lattice to be a frame for L^2. Remarkably, several of these conditions can be formulated without an inequality. In particular, instead of checking the invertibility of the frame operator on L^2 it suffices to verify that it is one-to-one on a certain subspace of tempered distributions.", "revisions": [ { "version": "v1", "updated": "2007-03-13T15:14:07.000Z" } ], "analyses": { "subjects": [ "42C15", "22E25" ], "keywords": [ "gabor frames", "inequality", "fourteen equivalent conditions", "timefrequency shifts", "frame operator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......3379G" } } }