{ "id": "math/0702811", "version": "v1", "published": "2007-02-27T07:45:32.000Z", "updated": "2007-02-27T07:45:32.000Z", "title": "Categorification of (induced) cell modules and the rough structure of generalized Verma modules", "authors": [ "Volodymyr Mazorchuk", "Catharina Stroppel" ], "comment": "59 pages", "journal": "Adv. Math. 219 (2008), no. 4, 1363--1426.", "categories": [ "math.RT" ], "abstract": "This paper presents categorifications of (right) cell modules and induced cell modules for Hecke algebras of finite Weyl groups. In type $A$ we show that these categorifications depend only on the isomorphism class of the cell module, not on the cell itself. Our main application is multiplicity formulas for parabolically induced modules over a reductive Lie algebra of type $A$, which finally determines the so-called rough structure of generalized Verma modules. On the way we present several categorification results and give the positive answer to Kostant's problem from \\cite{Jo} in many cases. We also give a general setup of decategorification, precategorification and categorification.", "revisions": [ { "version": "v1", "updated": "2007-02-27T07:45:32.000Z" } ], "analyses": { "subjects": [ "17B10" ], "keywords": [ "generalized verma modules", "rough structure", "finite weyl groups", "hecke algebras", "categorifications depend" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 59, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2811M" } } }