{ "id": "math/0702786", "version": "v1", "published": "2007-02-26T15:29:00.000Z", "updated": "2007-02-26T15:29:00.000Z", "title": "Convex hulls of polyominoes", "authors": [ "Sascha Kurz" ], "comment": "13 pages, 10 figures", "categories": [ "math.CO" ], "abstract": "In this article we prove a conjecture of Bezdek, Brass, and Harborth concerning the maximum volume of the convex hull of any facet-to-facet connected system of n unit hypercubes in the d-dimensional Euclidean space. For d=2 we enumerate the extremal polyominoes and determine the set of possible areas of the convex hull for each n.", "revisions": [ { "version": "v1", "updated": "2007-02-26T15:29:00.000Z" } ], "analyses": { "subjects": [ "05B50", "05D99", "52C99" ], "keywords": [ "convex hull", "d-dimensional euclidean space", "facet-to-facet connected system", "maximum volume", "unit hypercubes" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2786K" } } }