{ "id": "math/0702743", "version": "v2", "published": "2007-02-25T10:08:12.000Z", "updated": "2007-11-17T19:44:05.000Z", "title": "Minimizers of Dirichlet functionals on the n-torus and the Weak KAM Theory", "authors": [ "Gershon Wolansky" ], "comment": "35 pages, no figures", "categories": [ "math.DS", "math.AP" ], "abstract": "Given a probability measure $\\mu$ on the $n-$torus $T^n$ and a rotation vector $k\\in R^n$, we ask wether there exists a minimizer to the integral $\\int_{T^n} |\\grad\\phi+k|^2 d\\mu$. This problem leads, naturally, to a class of elliptic PDE and to an optimal transportation (Monge-Kantorovich) class of problems on the torus. It is also related to higher dimensional Aubry-Mather theory, dealing with invariant sets of periodic Lagrangians, and is known as the \"Weak-KAM theory\".", "revisions": [ { "version": "v2", "updated": "2007-11-17T19:44:05.000Z" } ], "analyses": { "subjects": [ "49K20", "65K10", "90C47" ], "keywords": [ "weak kam theory", "dirichlet functionals", "higher dimensional aubry-mather theory", "rotation vector", "weak-kam theory" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2743W" } } }