{ "id": "math/0702717", "version": "v2", "published": "2007-02-23T21:46:13.000Z", "updated": "2007-03-22T15:14:53.000Z", "title": "Topological obstructions for vertex numbers of Minkowski sums", "authors": [ "Raman Sanyal" ], "comment": "13 pages, 2 figures; Improved exposition and less typos. Construction/example and remarks added", "journal": "J. Combin. Theory Ser. A 116 (2009), no. 1, 168-179", "doi": "10.1016/j.jcta.2008.05.009", "categories": [ "math.CO", "math.MG" ], "abstract": "We show that for polytopes P_1, P_2, ..., P_r \\subset \\R^d, each having n_i \\ge d+1 vertices, the Minkowski sum P_1 + P_2 + ... + P_r cannot achieve the maximum of \\prod_i n_i vertices if r \\ge d. This complements a recent result of Fukuda & Weibel (2006), who show that this is possible for up to d-1 summands. The result is obtained by combining methods from discrete geometry (Gale transforms) and topological combinatorics (van Kampen--type obstructions) as developed in R\\\"{o}rig, Sanyal, and Ziegler (2007).", "revisions": [ { "version": "v2", "updated": "2007-03-22T15:14:53.000Z" } ], "analyses": { "subjects": [ "52B05" ], "keywords": [ "minkowski sum", "vertex numbers", "topological obstructions", "van kampen-type obstructions", "discrete geometry" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2717S" } } }