{ "id": "math/0702554", "version": "v7", "published": "2007-02-19T16:00:58.000Z", "updated": "2010-09-14T13:01:33.000Z", "title": "Counterexamples to the Kawamata-Viehweg Vanishing on Ruled Surfaces in Positive Characteristic", "authors": [ "Qihong Xie" ], "comment": "15 pages, final version", "categories": [ "math.AG" ], "abstract": "We give counterexamples to the Kawamata-Viehweg vanishing theorem on ruled surfaces in positive characteristic, and prove that if there is a counterexample to the Kawamata-Viehweg vanishing theorem on a geometrically ruled surface f:X-->C, then either C is a Tango curve or all of sections of f are ample.", "revisions": [ { "version": "v7", "updated": "2010-09-14T13:01:33.000Z" } ], "analyses": { "subjects": [ "14J26", "14E30" ], "keywords": [ "positive characteristic", "counterexample", "kawamata-viehweg vanishing theorem", "tango curve" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2554X" } } }