{ "id": "math/0702525", "version": "v1", "published": "2007-02-18T14:54:02.000Z", "updated": "2007-02-18T14:54:02.000Z", "title": "A conic bundle degenerating on the Kummer surface", "authors": [ "Michele Bolognesi" ], "comment": "29 pages", "categories": [ "math.AG" ], "abstract": "Let $C$ be a genus 2 curve and $\\su$ the moduli space of semi-stable rank 2 vector bundles on $C$ with trivial determinant. In \\cite{bol:wed} we described the parameter space of non stable extension classes (invariant with respect to the hyperelliptic involution) of the canonical sheaf $\\omega$ of $C$ with $\\omega_C^{-1}$. In this paper we study the classifying rational map $\\phi: \\pr Ext^1(\\omega,\\omega^{-1})\\cong \\pr^4 \\dashrightarrow \\su\\cong \\pr^3$ that sends an extension class on the corresponding rank two vector bundle. Moreover we prove that, if we blow up $\\pr^4$ along a certain cubic surface $S$ and $\\su$ at the point $p$ corresponding to the bundle $\\OO \\oplus \\OO$, then the induced morphism $\\tilde{\\phi}: Bl_S \\ra Bl_p\\su$ defines a conic bundle that degenerates on the blow up (at $p$) of the Kummer surface naturally contained in $\\su$. Furthermore we construct the $\\pr^2$-bundle that contains the conic bundle and we discuss the stability and deformations of one of its components.", "revisions": [ { "version": "v1", "updated": "2007-02-18T14:54:02.000Z" } ], "analyses": { "subjects": [ "14H60", "14J70" ], "keywords": [ "kummer surface", "conic bundle degenerating", "vector bundle", "non stable extension classes", "trivial determinant" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2525B" } } }