{ "id": "math/0702514", "version": "v2", "published": "2007-02-17T23:42:05.000Z", "updated": "2007-03-05T00:09:39.000Z", "title": "Knot Floer homology and Seifert surfaces", "authors": [ "Andras Juhasz" ], "comment": "4 pages, n=0 case corrected", "journal": "Algebraic & Geomertic Topology 8 (2008) 603-608", "doi": "10.2140/agt.2008.8.603", "categories": [ "math.GT" ], "abstract": "Let K be a knot in S^3 of genus g and let n>0. We show that if rk HFK(K,g) < 2^{n+1} (where HFK denotes knot Floer homology), in particular if K is an alternating knot such that the leading coefficient a_g of its Alexander polynomial satisfies |a_g| <2^{n+1}, then K has at most n pairwise disjoint non-isotopic genus g Seifert surfaces. For n=1 this implies that K has a unique minimal genus Seifert surface up to isotopy.", "revisions": [ { "version": "v2", "updated": "2007-03-05T00:09:39.000Z" } ], "analyses": { "subjects": [ "57M27", "57R58" ], "keywords": [ "hfk denotes knot floer homology", "unique minimal genus seifert surface", "pairwise disjoint non-isotopic genus" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2514J" } } }