{ "id": "math/0702475", "version": "v1", "published": "2007-02-16T08:32:42.000Z", "updated": "2007-02-16T08:32:42.000Z", "title": "A matrix subadditivity inequality for f(A+B) and f(A)+f(B)", "authors": [ "Jean-Christophe Bourin", "Mitsuru Uchiyama" ], "comment": "accepted in LAA", "categories": [ "math.FA", "math.OA" ], "abstract": "Let f be a non-negative concave function on the positive half-line. Let A and B be two positive matrices. Then, for all symmetric norms, || f(A+B) || is less than || f(A)+f(B) ||. When f is operator concave, this was proved by Ando and Zhan. Our method is simpler. Several related results are presented.", "revisions": [ { "version": "v1", "updated": "2007-02-16T08:32:42.000Z" } ], "analyses": { "subjects": [ "47A30", "47A63" ], "keywords": [ "matrix subadditivity inequality", "operator concave", "symmetric norms", "non-negative concave function", "positive half-line" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2475B" } } }