{ "id": "math/0702448", "version": "v2", "published": "2007-02-15T11:56:11.000Z", "updated": "2008-06-05T17:10:03.000Z", "title": "Similar sublattices of the root lattice $A_4$", "authors": [ "Michael Baake", "Manuela Heuer", "Robert V. Moody" ], "comment": "17 pages, 1 figure; revised version with several additions and improvements", "categories": [ "math.MG", "math.CO" ], "abstract": "Similar sublattices of the root lattice $A_4$ are possible, according to a result of Conway, Rains and Sloane, for each index that is the square of a non-zero integer of the form $m^2 + mn - n^2$. Here, we add a constructive approach, based on the arithmetic of the quaternion algebra $\\mathbb{H} (\\mathbb{Q} (\\sqrt{5}))$ and the existence of a particular involution of the second kind, which also provides the actual sublattices and the number of different solutions for a given index. The corresponding Dirichlet series generating function is closely related to the zeta function of the icosian ring.", "revisions": [ { "version": "v2", "updated": "2008-06-05T17:10:03.000Z" } ], "analyses": { "subjects": [ "52C07", "11R52", "05A15" ], "keywords": [ "root lattice", "similar sublattices", "corresponding dirichlet series generating function", "quaternion algebra", "zeta function" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2448B" } } }