{ "id": "math/0702362", "version": "v1", "published": "2007-02-13T11:45:35.000Z", "updated": "2007-02-13T11:45:35.000Z", "title": "Strichartz and smoothing estimates for dispersive equations with magnetic potentials", "authors": [ "Piero D'Ancona", "Luca Fanelli" ], "comment": "23 pages", "categories": [ "math.AP", "math-ph", "math.MP", "math.SP" ], "abstract": "We prove global smoothing and Strichartz estimates for the Schroedinger, wave, Klein-Gordon equations and for the massless and massive Dirac systems, perturbed with singular electromagnetic potentials. We impose a smallness condition on the magnetic part, while the electric part can be large. The decay and regularity assumptions on the coefficients are close to critical.", "revisions": [ { "version": "v1", "updated": "2007-02-13T11:45:35.000Z" } ], "analyses": { "subjects": [ "35L05", "58J45" ], "keywords": [ "dispersive equations", "smoothing estimates", "singular electromagnetic potentials", "klein-gordon equations", "regularity assumptions" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2362D" } } }