{ "id": "math/0702359", "version": "v1", "published": "2007-02-13T09:41:14.000Z", "updated": "2007-02-13T09:41:14.000Z", "title": "Equivariant Khovanov homology associated with symmetric links", "authors": [ "Nafaa Chbili" ], "comment": "17 pages, many figures", "categories": [ "math.GT" ], "abstract": "Let $\\Delta$ be a trivial knot in the three-sphere. For every finite cyclic group $G$ of odd order, we construct a $G$-equivariant Khovanov homology with coefficients in the filed $\\F_{2}$. This homology is an invariant of links up to isotopy in $(S^{3},\\Delta)$. Another interpretation is given using the categorification of the Kauffman bracket skein module of the solid torus. Our techniques apply in the case of graphs as well to define an equivariant version of the graph homology which categorifies the chromatic polynomial. Keywords: Khovanov homology, group action, equivariant Jones polynomial, skein modules.", "revisions": [ { "version": "v1", "updated": "2007-02-13T09:41:14.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "equivariant khovanov homology", "symmetric links", "kauffman bracket skein module", "equivariant jones polynomial", "finite cyclic group" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2359C" } } }