{ "id": "math/0702296", "version": "v1", "published": "2007-02-11T00:51:02.000Z", "updated": "2007-02-11T00:51:02.000Z", "title": "Resolvability vs. almost resolvability", "authors": [ "Istvan Juhasz", "Saharon Shelah", "Lajos Soukup" ], "categories": [ "math.GN", "math.LO" ], "abstract": "A space X is kappa-resolvable (resp. almost kappa-resolvable) if it contains kappa dense sets that are pairwise disjoint (resp. almost disjoint over the ideal of nowhere dense subsets of X). Answering a problem raised by Juhasz, Soukup, and Szentmiklossy, and improving a consistency result of Comfort and Hu, we prove, in ZFC, that for every infinite cardinal {kappa} there is an almost 2^{kappa}-resolvable but not {omega}_1-resolvable space of dispersion character {kappa} .", "revisions": [ { "version": "v1", "updated": "2007-02-11T00:51:02.000Z" } ], "analyses": { "keywords": [ "resolvability", "contains kappa dense sets", "dispersion character", "dense subsets", "consistency result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2296J" } } }