{ "id": "math/0702219", "version": "v3", "published": "2007-02-08T14:05:04.000Z", "updated": "2008-07-25T04:55:36.000Z", "title": "The genus zero Gromov-Witten invariants of [Sym^2 P^2]", "authors": [ "Jonathan Wise" ], "comment": "33 pages; mostly rewritten, many errors corrected; all comments welcome", "categories": [ "math.AG" ], "abstract": "We study the Abramovich--Vistoli moduli space of genus zero orbifold stable maps to [Sym^2 P^2], the stack symmetric square of P^2. This compactifies the moduli space of stable maps from hyperelliptic curves to P^2, and we show that all genus zero Gromov--Witten invariants are determined from trivial enumerative geometry of hyperelliptic curves. We also show how the genus zero Gromov--Witten invariants can be used to determine the number of hyperelliptic curves of degree d and genus g interpolating 3d + 1 generic points in P^2. Comparing our method to that of Graber for calculating the same numbers, we verify an example of the crepant resolution conjecture.", "revisions": [ { "version": "v3", "updated": "2008-07-25T04:55:36.000Z" } ], "analyses": { "subjects": [ "14N35", "14N10" ], "keywords": [ "genus zero gromov-witten invariants", "hyperelliptic curves", "genus zero orbifold stable maps", "crepant resolution conjecture", "abramovich-vistoli moduli space" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2219W" } } }