{ "id": "math/0702152", "version": "v1", "published": "2007-02-06T16:43:03.000Z", "updated": "2007-02-06T16:43:03.000Z", "title": "Fourier-Mukai transforms of curves and principal polarizations", "authors": [ "Marcello Bernardara" ], "comment": "7 pages", "categories": [ "math.AG" ], "abstract": "Given a Fourier-Mukai transform $\\Phi$ between the bounded derived categories of two smooth projective curves, we verifiy that the induced map between the Jacobian varieties preserves the principal polarization if and only if $\\Phi$ is an equivalence.", "revisions": [ { "version": "v1", "updated": "2007-02-06T16:43:03.000Z" } ], "analyses": { "subjects": [ "14F05", "14H40", "14H60" ], "keywords": [ "fourier-mukai transform", "principal polarization", "jacobian varieties preserves", "smooth projective curves", "bounded derived categories" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2152B" } } }