{ "id": "math/0702011", "version": "v1", "published": "2007-02-01T08:24:09.000Z", "updated": "2007-02-01T08:24:09.000Z", "title": "Multipliers of periodic orbits of quadratic polynomials and the parameter plane", "authors": [ "Genadi Levin" ], "comment": "28 pages, no figures", "categories": [ "math.DS", "math.CV" ], "abstract": "We prove an extension results for the multiplier of an attracting periodic orbit of a quadratic map as a function of the parameter. This has applications to the problem of geometry of the Mandelbrot and Julia sets. In particular, we prove that the size of p/q-limb of a hyperbolic component of the Mandelbrot set of period n is O(4^n/p), and give an explicit condition on internal arguments under which the Julia set of corresponding (unique) infinitely renormalizable quadratic polynomial is not locally connected", "revisions": [ { "version": "v1", "updated": "2007-02-01T08:24:09.000Z" } ], "analyses": { "subjects": [ "37F45" ], "keywords": [ "parameter plane", "multiplier", "julia set", "quadratic map", "infinitely renormalizable quadratic polynomial" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......2011L" } } }