{ "id": "math/0701920", "version": "v3", "published": "2007-01-31T13:00:00.000Z", "updated": "2008-05-26T15:05:32.000Z", "title": "On lower limits and equivalences for distribution tails of randomly stopped sums", "authors": [ "Denis Denisov", "Serguei Foss", "Dmitry Korshunov" ], "comment": "Published in at http://dx.doi.org/10.3150/07-BEJ111 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)", "journal": "Bernoulli 2008, Vol. 14, No. 2, 391-404", "doi": "10.3150/07-BEJ111", "categories": [ "math.PR" ], "abstract": "For a distribution $F^{*\\tau}$ of a random sum $S_{\\tau}=\\xi_1+...+\\xi_{\\tau}$ of i.i.d. random variables with a common distribution $F$ on the half-line $[0,\\infty)$, we study the limits of the ratios of tails $\\bar{F^{*\\tau}}(x)/\\bar{F}(x)$ as $x\\to\\infty$ (here, $\\tau$ is a counting random variable which does not depend on $\\{\\xi_n\\}_{n\\ge1}$). We also consider applications of the results obtained to random walks, compound Poisson distributions, infinitely divisible laws, and subcritical branching processes.", "revisions": [ { "version": "v3", "updated": "2008-05-26T15:05:32.000Z" } ], "analyses": { "keywords": [ "randomly stopped sums", "distribution tails", "lower limits", "equivalences", "compound poisson distributions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1920D" } } }