{ "id": "math/0701903", "version": "v1", "published": "2007-01-31T16:39:48.000Z", "updated": "2007-01-31T16:39:48.000Z", "title": "Essential dimension and algebraic stacks", "authors": [ "Patrick Brosnan", "Zinovy Reichstein", "Angelo Vistoli" ], "comment": "52 pages", "categories": [ "math.AG" ], "abstract": "We define and study the essential dimension of an algebraic stack. We compute the essential dimension of the stacks Mgn and MgnBar of smooth, or stable, n-pointed curves of genus g. We also prove a general lower bound for the essential dimension of algebraic groups with a non-trivial center. Using this, we find new exponential lower bounds for the essential dimension of spin groups and new formulas for the essential dimension of some finite p-groups. Finally, we apply the lower bound for spin groups to the theory of the Witt ring of quadratic forms over a field k.", "revisions": [ { "version": "v1", "updated": "2007-01-31T16:39:48.000Z" } ], "analyses": { "subjects": [ "14A20", "20G15", "11E04", "14H10" ], "keywords": [ "essential dimension", "algebraic stack", "spin groups", "exponential lower bounds", "general lower bound" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1903B" } } }