{ "id": "math/0701861", "version": "v1", "published": "2007-01-29T20:16:44.000Z", "updated": "2007-01-29T20:16:44.000Z", "title": "Algebraic cycles on Severi-Brauer schemes of prime degree over a curve", "authors": [ "Cristian D. Gonzalez-Aviles" ], "comment": "6 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $k$ be a perfect field and let $p$ be a prime number different from the characteristic of $k$. Let $C$ be a smooth, projective and geometrically integral $k$-curve and let $X$ be a Severi-Brauer $C$-scheme of relative dimension $p-1$ . In this paper we show that $CH^{d}(X)_{{\\rm{tors}}}$ contains a subgroup isomorphic to $CH_{0}(X/C)$ for every $d$ in the range $2\\leq d\\leq p$. We deduce that, if $k$ is a number field, then $CH^{d}(X)$ is finitely generated for every $d$ in the indicated range.", "revisions": [ { "version": "v1", "updated": "2007-01-29T20:16:44.000Z" } ], "analyses": { "subjects": [ "14C25", "14C15" ], "keywords": [ "severi-brauer schemes", "prime degree", "algebraic cycles", "perfect field", "prime number" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1861G" } } }