{ "id": "math/0701774", "version": "v1", "published": "2007-01-26T15:41:06.000Z", "updated": "2007-01-26T15:41:06.000Z", "title": "A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions", "authors": [ "Ahmad El Soufi", "Mustapha Jazar", "Régis Monneau" ], "journal": "Annales de l'Institut Henri Poincar\\'{e} Analyse non lin\\'{e}aire 24 (2007) 17--39", "categories": [ "math.AP" ], "abstract": "In this paper we study a simple non-local semilinear parabolic equation with Neumann boundary condition. We give local existence result and prove global existence for small initial data. A natural non increasing in time energy is associated to this equation. We prove that the solution blows up at finite time $T$ if and only if its energy is negative at some time before $T$. The proof of this result is based on a Gamma-convergence technique.", "revisions": [ { "version": "v1", "updated": "2007-01-26T15:41:06.000Z" } ], "analyses": { "subjects": [ "35B35", "35B40", "35K55" ], "keywords": [ "neumann boundary condition", "gamma-convergence argument", "simple non-local semilinear parabolic equation", "local existence result" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1774E" } } }