{ "id": "math/0701766", "version": "v3", "published": "2007-01-26T05:09:26.000Z", "updated": "2007-03-13T16:11:51.000Z", "title": "Knots with g(E(K)) = 2 and g(E(K#K#K)) = 6 and Morimoto's Conjecture", "authors": [ "Tsuyoshi Kobayashi", "Yo'av Rieck" ], "comment": "6 pages. Final version", "categories": [ "math.GT" ], "abstract": "We show that there exist knots K in S^3 with g(E(K))=2 and g(E(K#K#K))=6. Together with Theorem~1.5 of [1], this proves existence of counterexamples to Morimoto's Conjecture (Conjecture 1.5 of [2]). This is a special case of arxiv.org/abs/math.GT/0701765 [1] Tsuyoshi Kobayashi and Yo'av Rieck. On the growth rate of the tunnel number of knots. J. Reine Angew. Math., 592:63--78, 2006. [2] Kanji Morimoto. On the super additivity of tunnel number of knots.Math. Ann., 317(3):489--508, 2000.", "revisions": [ { "version": "v3", "updated": "2007-03-13T16:11:51.000Z" } ], "analyses": { "subjects": [ "57M99" ], "keywords": [ "morimotos conjecture", "tunnel number", "kanji morimoto", "special case", "reine angew" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1766K" } } }