{ "id": "math/0701757", "version": "v1", "published": "2007-01-25T21:53:07.000Z", "updated": "2007-01-25T21:53:07.000Z", "title": "A multiplicity result for the problem $δd ξ= f'(<ξ,ξ>)ξ$", "authors": [ "Antonio Azzollini" ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "In this paper we consider the nonlinear equation involving differential forms on a compact Riemannian manifold $\\delta d \\xi = f'(<\\xi,\\xi>)\\xi$. This equation is a generalization of the semilinear Maxwell equations recently introduced in a paper by Benci and Fortunato. We obtain a multiplicity result both in the positive mass case (i.e. $f'(t)\\geq\\epsilon>0$ uniformly) and in the zero mass case ($f'(t)\\geq 0$ and $f'(0)=0$) where a strong convexity hypothesis on the nonlinearity is assumed.", "revisions": [ { "version": "v1", "updated": "2007-01-25T21:53:07.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "multiplicity result", "zero mass case", "semilinear maxwell equations", "strong convexity hypothesis", "compact riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1757A" } } }