{ "id": "math/0701659", "version": "v1", "published": "2007-01-23T23:12:12.000Z", "updated": "2007-01-23T23:12:12.000Z", "title": "Distances of groups of prime order", "authors": [ "Petr Vojtěchovský" ], "comment": "7 pages", "journal": "proceedings of Olomouc Workshop on General Algebra '98, published in Contributions to General Algebra 11, 225-231, Verlag Johannes Heyn, Klagenfurt, 1999", "categories": [ "math.GR" ], "abstract": "Given two finite groups G(.), G(*) defined on the same set G, their distance is the number of pairs (x,y) for which x.y and x*y differ. The Cayley stability of a group G(.) is the minimum distance of G(.) from another group defined on G. We show that the Cayley stability of the cyclic group of prime order p is 6p-18, for every p>7.", "revisions": [ { "version": "v1", "updated": "2007-01-23T23:12:12.000Z" } ], "analyses": { "subjects": [ "20K01" ], "keywords": [ "prime order", "cayley stability", "minimum distance", "finite groups" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1659V" } } }