{ "id": "math/0701592", "version": "v1", "published": "2007-01-21T20:38:18.000Z", "updated": "2007-01-21T20:38:18.000Z", "title": "Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation", "authors": [ "Peter Constantin", "Jiahong Wu" ], "categories": [ "math.AP" ], "abstract": "We present a regularity result for weak solutions of the 2D quasi-geostrophic equation with supercritical ($\\alpha< 1/2$) dissipation $(-\\Delta)^\\alpha$ : If a Leray-Hopf weak solution is H\\\"{o}lder continuous $\\theta\\in C^\\delta({\\mathbb R}^2)$ with $\\delta>1-2\\alpha$ on the time interval $[t_0, t]$, then it is actually a classical solution on $(t_0,t]$.", "revisions": [ { "version": "v1", "updated": "2007-01-21T20:38:18.000Z" } ], "analyses": { "subjects": [ "76D03", "35Q35" ], "keywords": [ "hölder continuous solutions", "supercritical quasi-geostrophic equation", "2d quasi-geostrophic equation", "leray-hopf weak solution", "time interval" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008AnIHP..25.1103C" } } }