{ "id": "math/0701372", "version": "v1", "published": "2007-01-13T06:40:29.000Z", "updated": "2007-01-13T06:40:29.000Z", "title": "On uniqueness of maximal coupling for diffusion processes with a reflection", "authors": [ "Kazumasa Kuwada" ], "comment": "23 pages", "categories": [ "math.PR" ], "abstract": "A maximal coupling of two diffusion processes makes two diffusion particles meet as early as possible. We study the uniqueness of maximal couplings under a sort of \"reflection structure\" which ensures the existence of such couplings. In this framework, the uniqueness in the class of Markovian couplings holds for the Brownian motion on a Riemannian manifold whereas it fails in more singular cases. We also prove that a Kendall-Cranston coupling is maximal under the reflection structure.", "revisions": [ { "version": "v1", "updated": "2007-01-13T06:40:29.000Z" } ], "analyses": { "subjects": [ "60J60", "58J65" ], "keywords": [ "diffusion processes", "maximal coupling", "uniqueness", "reflection structure", "diffusion particles meet" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1372K" } } }