{ "id": "math/0701353", "version": "v1", "published": "2007-01-12T17:26:38.000Z", "updated": "2007-01-12T17:26:38.000Z", "title": "Andreotti-Mayer loci and the Schottky problem", "authors": [ "Ciro Ciliberto", "Gerard van der Geer" ], "comment": "46 pages, Latex", "categories": [ "math.AG" ], "abstract": "We prove a lower bound for the codimension of the Andreotti-Mayer locus N_{g,1} and show that the lower bound is reached only for the hyperelliptic locus in genus 4 and the Jacobian locus in genus 5. In relation with the boundary of the Andreotti-Mayer loci we study subvarieties of principally polarized abelian varieties (B,Theta) parametrizing points b such that Theta and the translate Theta_b are tangentially degenerate along a variety of a given dimension.", "revisions": [ { "version": "v1", "updated": "2007-01-12T17:26:38.000Z" } ], "analyses": { "keywords": [ "andreotti-mayer locus", "schottky problem", "lower bound", "hyperelliptic locus", "jacobian locus" ], "note": { "typesetting": "LaTeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1353C" } } }