{ "id": "math/0701316", "version": "v4", "published": "2007-01-11T01:47:59.000Z", "updated": "2008-08-27T05:34:18.000Z", "title": "Critical random graphs: Diameter and mixing time", "authors": [ "Asaf Nachmias", "Yuval Peres" ], "comment": "Published in at http://dx.doi.org/10.1214/07-AOP358 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2008, Vol. 36, No. 4, 1267-1286", "doi": "10.1214/07-AOP358", "categories": [ "math.PR", "math.CO" ], "abstract": "Let $\\mathcal{C}_1$ denote the largest connected component of the critical Erd\\H{o}s--R\\'{e}nyi random graph $G(n,{\\frac{1}{n}})$. We show that, typically, the diameter of $\\mathcal{C}_1$ is of order $n^{1/3}$ and the mixing time of the lazy simple random walk on $\\mathcal{C}_1$ is of order $n$. The latter answers a question of Benjamini, Kozma and Wormald. These results extend to clusters of size $n^{2/3}$ of $p$-bond percolation on any $d$-regular $n$-vertex graph where such clusters exist, provided that $p(d-1)\\le1+O(n^{-1/3})$.", "revisions": [ { "version": "v4", "updated": "2008-08-27T05:34:18.000Z" } ], "analyses": { "subjects": [ "05C80", "82B43", "60C05" ], "keywords": [ "critical random graphs", "mixing time", "lazy simple random walk", "vertex graph", "bond percolation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1316N" } } }