{ "id": "math/0701249", "version": "v6", "published": "2007-01-09T12:09:43.000Z", "updated": "2010-11-04T19:30:07.000Z", "title": "On the Pytkeev property in spaces of continuous functions (II)", "authors": [ "Boaz Tsaban", "Lyubomyr Zdomskyy" ], "journal": "Houston Journal of Mathematics, 35 (2009), 563-571", "categories": [ "math.GN", "math.FA", "math.LO" ], "abstract": "We prove that for each Polish space X, the space C(X) of continuous real-valued functions on X satisfies a strong version of the Pytkeev property, if endowed with the compact-open topology. (This shows that whereas it need not be metrizable, it is \"very close\" to that.) We also consider the Pytkeev property in the case where C(X) is endowed with the topology of pointwise convergence.", "revisions": [ { "version": "v6", "updated": "2010-11-04T19:30:07.000Z" } ], "analyses": { "keywords": [ "pytkeev property", "continuous functions", "strong version", "compact-open topology", "polish space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1249T" } } }