{ "id": "math/0701202", "version": "v2", "published": "2007-01-07T08:47:37.000Z", "updated": "2007-01-21T08:54:55.000Z", "title": "On the Riemann zeta-function and the divisor problem IV", "authors": [ "Aleksandar Ivić" ], "comment": "11 pages", "journal": "Uniform Distribution Theory 1(2006), 125-135", "categories": [ "math.NT" ], "abstract": "Let $\\Delta(x)$ denote the error term in the Dirichlet divisor problem, and $E(T)$ the error term in the asymptotic formula for the mean square of $|\\zeta(1/2+it)|$. If $E^*(t) = E(t) - 2\\pi\\Delta^*(t/(2\\pi))$ with $\\Delta^*(x) = -\\Delta(x) + 2\\Delta(2x) - {1\\over2}\\Delta(4x)$, then it is proved that $$ \\int_0^T|E^*(t)|^3dt \\ll_\\epsilon T^{3/2+\\epsilon}, $$ which is (up to `$\\epsilon$' best possible) and $\\zeta(1/2+it) \\ll_\\epsilon t^{\\rho/2+\\epsilon}$ if $E^*(t) \\ll_\\epsilon t^{\\rho+\\epsilon}$.", "revisions": [ { "version": "v2", "updated": "2007-01-21T08:54:55.000Z" } ], "analyses": { "subjects": [ "11N37", "11M06" ], "keywords": [ "riemann zeta-function", "error term", "dirichlet divisor problem", "asymptotic formula" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1202I" } } }