{ "id": "math/0701052", "version": "v1", "published": "2007-01-02T10:02:42.000Z", "updated": "2007-01-02T10:02:42.000Z", "title": "On the m-torsion Subgroup of the Brauer Group of a Global Field", "authors": [ "Wen-Chen Chi", "Hung-Min Liao", "Ki-Seng Tan" ], "comment": "5 pages", "categories": [ "math.NT" ], "abstract": "In this note, we give a short proof of the existence of certain abelian extension over a given global field $K$. This result implies that for every positive integer $m$, there exists an abelian extension $L/K$ of exponent $m$ such that the $m$-torsion subgroup of $\\Br(K)$ equals $\\Br(L/K)$.", "revisions": [ { "version": "v1", "updated": "2007-01-02T10:02:42.000Z" } ], "analyses": { "subjects": [ "11K60", "11R29", "11R34", "11R37", "11R56", "11R58", "11S15", "11S37", "11S25" ], "keywords": [ "global field", "brauer group", "m-torsion subgroup", "abelian extension", "short proof" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1052C" } } }