{ "id": "math/0612712", "version": "v1", "published": "2006-12-22T15:13:14.000Z", "updated": "2006-12-22T15:13:14.000Z", "title": "The Dirichlet problem for constant mean curvature surfaces in Heisenberg space", "authors": [ "Luis J. Alias", "Marcos Dajczer", "Harold Rosenberg" ], "journal": "Calculus of Variations and PDE 30 (2007), 513--522", "doi": "10.1007/s00526-007-0101-1", "categories": [ "math.DG", "math.AP" ], "abstract": "We study constant mean curvature graphs in the Riemannian 3-dimensional Heisenberg spaces ${\\cal H}={\\cal H}(\\tau)$. Each such ${\\cal H}$ is the total space of a Riemannian submersion onto the Euclidean plane $\\mathbb{R}^2$ with geodesic fibers the orbits of a Killing field. We prove the existence and uniqueness of CMC graphs in ${\\cal H}$ with respect to the Riemannian submersion over certain domains $\\Omega\\subset\\mathbb{R}^2$ taking on prescribed boundary values.", "revisions": [ { "version": "v1", "updated": "2006-12-22T15:13:14.000Z" } ], "analyses": { "subjects": [ "35J60", "53C42" ], "keywords": [ "constant mean curvature surfaces", "heisenberg space", "dirichlet problem", "study constant mean curvature graphs", "riemannian submersion" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12712A" } } }