{ "id": "math/0612588", "version": "v1", "published": "2006-12-20T12:54:55.000Z", "updated": "2006-12-20T12:54:55.000Z", "title": "Strongly singular integrals along curves", "authors": [ "Norberto Laghi", "Neil lyall" ], "comment": "10 pages", "categories": [ "math.CA" ], "abstract": "In this article we obtain $L^2$ bounds for strongly singular integrals along curves in $\\R^d;$ our results both generalise and extend to higher dimensions those obtained by Chandarana in the plane. Moreover, we show that the operators in question are bounded from $L\\log L$ to weak $L^1$ at the critical exponent $\\alpha=0.$", "revisions": [ { "version": "v1", "updated": "2006-12-20T12:54:55.000Z" } ], "analyses": { "subjects": [ "44A12", "42B20" ], "keywords": [ "strongly singular integrals", "higher dimensions", "generalise", "chandarana", "critical exponent" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12588L" } } }