{ "id": "math/0612457", "version": "v1", "published": "2006-12-15T21:08:53.000Z", "updated": "2006-12-15T21:08:53.000Z", "title": "A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order", "authors": [ "Michael Christ", "James Colliander", "Terence Tao" ], "comment": "22 pages", "categories": [ "math.AP" ], "abstract": "Solutions to the Cauchy problem for the one-dimensional cubic nonlinear Schr\\\"odinger equation on the real line are studied in Sobolev spaces $H^s$, for $s$ negative but close to 0. For smooth solutions there is an {\\em a priori} upper bound for the $H^s$ norm of the solution, in terms of the $H^s$ norm of the datum, for arbitrarily large data, for sufficiently short time. Weak solutions are constructed for arbitrary initial data in $H^s$.", "revisions": [ { "version": "v1", "updated": "2006-12-15T21:08:53.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "nonlinear schrödinger equation", "sobolev spaces", "weak solutions", "priori bounds", "negative order" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12457C" } } }