{ "id": "math/0612426", "version": "v1", "published": "2006-12-15T00:29:30.000Z", "updated": "2006-12-15T00:29:30.000Z", "title": "A lower bound for the scalar curvature of the standard solution of the Ricci flow", "authors": [ "Shu-Yu Hsu" ], "categories": [ "math.DG" ], "abstract": "In this paper we will give a rigorous proof of the lower bound for the scalar curvature of the standard solution of the Ricci flow conjectured by G. Perelman. We will prove that the scalar curvature $R$ of the standard solution satisfies $R(x,t)\\ge C_0/(1-t)\\quad\\forall x\\in\\Bbb{R}^3,0\\le t<1$, for some constant $C_0>0$.", "revisions": [ { "version": "v1", "updated": "2006-12-15T00:29:30.000Z" } ], "analyses": { "subjects": [ "58J35" ], "keywords": [ "scalar curvature", "lower bound", "standard solution satisfies", "rigorous proof", "ricci flow" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12426H" } } }