{ "id": "math/0612358", "version": "v2", "published": "2006-12-13T16:29:21.000Z", "updated": "2007-01-11T04:42:30.000Z", "title": "Sufficient conditions for a real polynomial to be a sum of squares", "authors": [ "Jean B. Lasserre" ], "comment": "9 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "We provide explicit conditions for a real polynomial $f$ of degree 2d to be a sum of squares (s.o.s.), stated only in terms of the coefficients of $f$, i.e. with no lifting. All conditions are simple and provide an explicit description of a convex polyhedral subcone of the cone of s.o.s. polynomials of degree at most 2d. We also provide a simple condition to ensure that $f$ is s.o.s., possibly modulo a constant.", "revisions": [ { "version": "v2", "updated": "2007-01-11T04:42:30.000Z" } ], "analyses": { "subjects": [ "12E05", "12Y05" ], "keywords": [ "real polynomial", "sufficient conditions", "convex polyhedral subcone", "degree 2d", "explicit description" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12358L" } } }