{ "id": "math/0612354", "version": "v1", "published": "2006-12-13T13:25:05.000Z", "updated": "2006-12-13T13:25:05.000Z", "title": "Estimates for the Sobolev trace constant with critical exponent and applications", "authors": [ "J. Fernandez Bonder", "N. Saintier" ], "comment": "22 pages, submitted", "journal": "Ann. Mat. Pura Appl, 187 (2008), no. 4, 683--704.", "doi": "10.1007/s10231-007-0062-1", "categories": [ "math.AP" ], "abstract": "In this paper we find estimates for the optimal constant in the critical Sobolev trace inequality $S\\|u\\|^p_{L^{p_*}(\\partial\\Omega) \\hookrightarrow \\|u\\|^p_{W^{1,p}(\\Omega)}$ that are independent of $\\Omega$. This estimates generalized those of [3] for general $p$. Here $p_* := p(N-1)/(N-p)$ is the critical exponent for the immersion and $N$ is the space dimension. Then we apply our results first to prove existence of positive solutions to a nonlinear elliptic problem with a nonlinear boundary condition with critical growth on the boundary, generalizing the results of [16]. Finally, we study an optimal design problem with critical exponent.", "revisions": [ { "version": "v1", "updated": "2006-12-13T13:25:05.000Z" } ], "analyses": { "subjects": [ "35J20", "35P30" ], "keywords": [ "sobolev trace constant", "critical exponent", "applications", "optimal design problem", "critical sobolev trace inequality" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12354F" } } }