{ "id": "math/0612339", "version": "v2", "published": "2006-12-13T03:45:34.000Z", "updated": "2006-12-14T12:57:22.000Z", "title": "Lattice representations of Heisenberg groups", "authors": [ "Jae-Hyun Yang" ], "comment": "16 pages, change of page height", "journal": "Math. Ann. 317 (2000), pp. 309-323", "categories": [ "math.RT", "math.NT" ], "abstract": "In this article, we prove that a lattice representation of the Heisenberg group $H_{\\mathbb R}^{(g,h)}$ associated to a lattice $L$ and a positive definite symmetric half-integral matrix M of degree $h$ is unitarily equivalent to the direct sum of $(det 2M)^g$ copies of the Schroedinger representation of $H_{\\mathbb R}^{(g,h)}$.", "revisions": [ { "version": "v2", "updated": "2006-12-14T12:57:22.000Z" } ], "analyses": { "subjects": [ "22E27", "11F27" ], "keywords": [ "heisenberg group", "lattice representation", "positive definite symmetric half-integral matrix", "schroedinger representation", "direct sum" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12339Y" } } }