{ "id": "math/0612316", "version": "v2", "published": "2006-12-12T15:38:16.000Z", "updated": "2007-10-12T00:53:50.000Z", "title": "Morse-Bott homology", "authors": [ "Augustin Banyaga", "David E. Hurtubise" ], "comment": "53 pages, 4 figures", "journal": "Trans. Amer. Math. Soc., 362, no. 8, p. 3997-4043, 2010", "categories": [ "math.AT", "math.DS", "math.GT" ], "abstract": "We give a new proof of the Morse Homology Theorem by constructing a chain complex associated to a Morse-Bott-Smale function that reduces to the Morse-Smale-Witten chain complex when the function is Morse-Smale and to the chain complex of smooth singular $N$-cube chains when the function is constant. We show that the homology of the chain complex is independent of the Morse-Bott-Smale function by using compactified moduli spaces of time dependent gradient flow lines to prove a Floer-type continuation theorem.", "revisions": [ { "version": "v2", "updated": "2007-10-12T00:53:50.000Z" } ], "analyses": { "subjects": [ "57R70", "58E05", "57R58", "37D15" ], "keywords": [ "morse-bott homology", "time dependent gradient flow lines", "morse-bott-smale function", "floer-type continuation theorem", "morse homology theorem" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12316B" } } }