{ "id": "math/0612307", "version": "v1", "published": "2006-12-12T09:58:05.000Z", "updated": "2006-12-12T09:58:05.000Z", "title": "Spaces of functions with countably many discontinuities", "authors": [ "R Haydon", "A Molto", "J Orihuela" ], "categories": [ "math.FA", "math.GN" ], "abstract": "Let $\\Gamma$ be a Polish space and let $K$ be a separable and pointwise compact set of real-valued functions on $\\Gamma$. It is shown that if each function in $K$ has only countably many discontinuities then $C(K)$ may be equipped with a $T_p$-lower semicontinuous and locally uniformly convex norm, equivalent to the supremum norm.", "revisions": [ { "version": "v1", "updated": "2006-12-12T09:58:05.000Z" } ], "analyses": { "subjects": [ "46B03", "54H05" ], "keywords": [ "discontinuities", "pointwise compact set", "locally uniformly convex norm", "supremum norm", "real-valued functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12307H" } } }