{ "id": "math/0612234", "version": "v1", "published": "2006-12-09T15:12:59.000Z", "updated": "2006-12-09T15:12:59.000Z", "title": "Recursive definitions on surreal numbers", "authors": [ "Antongiulio Fornasiero" ], "categories": [ "math.LO", "math.RA" ], "abstract": "Let No be Conway's class of surreal numbers. I will make explicit the notion of a function f on No recursively defined over some family of functions. Under some \"tameness\" and uniformity condition, f must satisfy some interesting properties; in particular, the supremum of the class of element greater or equal to a fixed d in No is actually an element of No. For similar reasons, the concatenation function x:y cannot be defined recursively in a uniform way over polynomial functions.", "revisions": [ { "version": "v1", "updated": "2006-12-09T15:12:59.000Z" } ], "analyses": { "subjects": [ "03C64", "03C65", "03H05", "12J15", "20F60" ], "keywords": [ "surreal numbers", "recursive definitions", "concatenation function", "similar reasons", "polynomial functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12234F" } } }