{ "id": "math/0612221", "version": "v1", "published": "2006-12-08T21:09:29.000Z", "updated": "2006-12-08T21:09:29.000Z", "title": "On parameterizations of Teichmüller spaces of surfaces with boundary", "authors": [ "Ren Guo" ], "comment": "12 pages, 4 figures", "journal": "J. Differential Geom. 82 (2009), no. 3, 629--640", "categories": [ "math.GT" ], "abstract": "In \\cite{rigidity}, Luo introduced a $\\psi_{\\lambda}$ edge invariant which turns out to be a coordinate of the Teichm\\\"uller space of a surface with boundary. And he proved that for $\\lambda \\geq 0$, the image of the Teichm\\\"uller space under $\\psi_{\\lambda}$ edge invariant coordinate is an open cell. In this paper we verify his conjecture that for $\\lambda<0$, the image of the Teichm\\\"uller space is a bounded convex polytope.", "revisions": [ { "version": "v1", "updated": "2006-12-08T21:09:29.000Z" } ], "analyses": { "subjects": [ "57M50", "30F45", "30F60" ], "keywords": [ "teichmüller spaces", "parameterizations", "edge invariant coordinate", "bounded convex polytope", "open cell" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12221G" } } }