{ "id": "math/0612147", "version": "v1", "published": "2006-12-06T09:46:05.000Z", "updated": "2006-12-06T09:46:05.000Z", "title": "Counting points on varieties over finite fields of small characteristic", "authors": [ "Alan G. B. Lauder", "Daqing Wan" ], "comment": "To appear in: \"Algorithmic number theory: lattices, number fields, curves and cryptography\", J.P. Buhler and P. Stevenhagen (ed.), Math. Sci. Res. Inst. Publ. 44. (Submitted July 2001; Accepted October 2002.)", "categories": [ "math.NT", "math.AG" ], "abstract": "We present a deterministic polynomial time algorithm for computing the zeta function of an arbitrary variety of fixed dimension over a finite field of small characteristic. One consequence of this result is an efficient method for computing the order of the group of rational points on the Jacobian of a smooth geometrically connected projective curve over a finite field of small characteristic.", "revisions": [ { "version": "v1", "updated": "2006-12-06T09:46:05.000Z" } ], "analyses": { "subjects": [ "11Y16", "11T99", "14Q15" ], "keywords": [ "finite field", "small characteristic", "counting points", "deterministic polynomial time algorithm", "smooth geometrically connected projective curve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12147L" } } }