{ "id": "math/0612131", "version": "v1", "published": "2006-12-05T20:35:37.000Z", "updated": "2006-12-05T20:35:37.000Z", "title": "Square summability of variations and convergence of the transfer operator", "authors": [ "Anders Johansson", "Anders Öberg" ], "comment": "8 pages", "categories": [ "math.DS", "math.PR" ], "abstract": "In this paper we study the one-sided shift operator on a state space defined by a finite alphabet. Using a scheme developed by Walters [13], we prove that the sequence of iterates of the transfer operator converges under square summability of variations of the g-function, a condition which gave uniqueness of a g-measure in [7]. We also prove uniqueness of so-called G-measures, introduced by Brown and Dooley [2], under square summability of variations.", "revisions": [ { "version": "v1", "updated": "2006-12-05T20:35:37.000Z" } ], "analyses": { "subjects": [ "37A05", "28D05", "37A30", "37A60" ], "keywords": [ "square summability", "variations", "convergence", "transfer operator converges", "state space" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12131J" } } }