{ "id": "math/0612058", "version": "v1", "published": "2006-12-02T19:23:35.000Z", "updated": "2006-12-02T19:23:35.000Z", "title": "Plancherel-Rotach Asymptotics for $q$-Laguerre Orthogonal Polynomials with Complex Scaling", "authors": [ "Ruiming Zhang" ], "comment": "22 pages", "categories": [ "math.CA", "math.CV" ], "abstract": "In this work we study the Plancherel-Rotach type asymptotics for $q$-Laguerre orthogonal polynomials with complex scaling . The main term of the asymptotics contains Ramanujan function $A_{q}(z)$ for the scaling parameter on the vertical line $\\Re(s)=2$, while the main term of the asymptotics involves the theta function for the scaling parameter in the strip $0<\\Re(s)<2$. In the latter case the number theoretical property of the scaling parameter completely determines the order of the error term. $ $These asymptotic formulas may provide insights to some new random matrix model and add a new link between special functions and number theory.", "revisions": [ { "version": "v1", "updated": "2006-12-02T19:23:35.000Z" } ], "analyses": { "subjects": [ "30E15", "33D45" ], "keywords": [ "laguerre orthogonal polynomials", "complex scaling", "plancherel-rotach asymptotics", "scaling parameter", "main term" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12058Z" } } }