{ "id": "math/0611947", "version": "v1", "published": "2006-11-30T12:34:46.000Z", "updated": "2006-11-30T12:34:46.000Z", "title": "A geometric estimate on the norm of product of functionals", "authors": [ "Mate Matolcsi" ], "comment": "7 pages", "journal": "Linear Algebra Appl. 405 (2005), 304--310", "categories": [ "math.CA" ], "abstract": "The open problem of determining the exact value of the $n$-th linear polarization constant $c_n$ of $\\R^n$ has received considerable attention over the past few years. This paper makes a contribution to the subject by providing a new lower bound on the value of $\\sup_{\\|{\\bf{y}}\\|=1}| {\\bf{x}}_1,{\\bf{y}} ... {\\bf{x}}_n,{\\bf{y}} |$, where ${\\bf{x}}_1, ... ,{\\bf{x}}_n$ are unit vectors in $\\R^n$. The new estimate is given in terms of the eigenvalues of the Gram matrix $[ {\\bf{x}}_i,{\\bf{x}}_j ]$ and improves upon earlier estimates of this kind. However, the intriguing conjecture $c_n=n^{n/2}$ remains open.", "revisions": [ { "version": "v1", "updated": "2006-11-30T12:34:46.000Z" } ], "analyses": { "subjects": [ "46G25", "52A40", "46B07" ], "keywords": [ "geometric estimate", "functionals", "th linear polarization constant", "gram matrix", "exact value" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11947M" } } }