{ "id": "math/0611946", "version": "v1", "published": "2006-11-30T12:28:04.000Z", "updated": "2006-11-30T12:28:04.000Z", "title": "Linear polarization constant of $\\R^n$", "authors": [ "Mate Matolcsi" ], "comment": "8 pages", "journal": "Acta Math. Hungar. 108 (2005), no. 1-2, 129--136", "categories": [ "math.CA" ], "abstract": "The present work contributes to the determination of the $n$-th linear polarization constant $c_n(H)$ of an $n$-dimensional real Hilbert space $H$. We provide some new lower bounds on the value of $\\sup_{\\|y\\|=1}| x_1,y >... x_n,y |$, where $x_1, ..., x_n$ are unit vectors in $H$. In particular, the results improve an earlier estimate of Marcus. However, the intriguing conjecture $c_n(H)=n^{n/2}$ remains open.", "revisions": [ { "version": "v1", "updated": "2006-11-30T12:28:04.000Z" } ], "analyses": { "subjects": [ "46G25", "52A40", "46B07" ], "keywords": [ "dimensional real hilbert space", "th linear polarization constant", "work contributes", "lower bounds", "unit vectors" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....11946M" } } }