{ "id": "math/0611945", "version": "v1", "published": "2006-11-30T12:20:31.000Z", "updated": "2006-11-30T12:20:31.000Z", "title": "K-theoretic Donaldson invariants via instanton counting", "authors": [ "Lothar Göttsche", "Hiraku Nakajima", "Kota Yoshioka" ], "comment": "72 pages, 2 figures", "categories": [ "math.AG", "hep-th", "math.DG" ], "abstract": "In this paper we study the holomorphic Euler characteristics of determinant line bundles on moduli spaces of rank 2 semistable sheaves on an algebraic surface X, which can be viewed as $K$-theoretic versions of the Donaldson invariants. In particular, if X is a smooth projective toric surface, we determine these invariants and their wallcrossing in terms of the K-theoretic version of the Nekrasov partition function (called 5-dimensional supersymmetric Yang-Mills theory compactified on a circle in the physics literature). Using the results of math.AG/0606180 we give an explicit generating function for the wallcrossing of these invariants in terms of elliptic functions and modular forms.", "revisions": [ { "version": "v1", "updated": "2006-11-30T12:20:31.000Z" } ], "analyses": { "subjects": [ "14D20", "14D21", "57R57", "81T13", "81T60" ], "keywords": [ "k-theoretic donaldson invariants", "instanton counting", "supersymmetric yang-mills theory", "nekrasov partition function", "smooth projective toric surface" ], "tags": [ "journal article" ], "publication": { "doi": "10.4310/PAMQ.2009.v5.n3.a5" }, "note": { "typesetting": "TeX", "pages": 72, "language": "en", "license": "arXiv", "status": "editable", "inspire": 733244, "adsabs": "2006math.....11945G" } } }